БЭС:
Большая
Советская
Энциклопедия

Слова:

РИТУРНЕЛЬ (франц. ritournelle, итал. ritornello, от ritorno - возвращение).
РОЛЛЯ ТЕОРЕМА, теорема математич. анализа.
САХАРИМЕТР, прибор для определения содержания сахара.
СГУСТИТЕЛЬ, аппарат непрерывного действия.
СЕЙШЕЛЬСКАЯ ПАЛЬМА (Lodoicea maldivica).
РАДИОЭКОЛОГИЯ, раздел экологии.
РАДИЩЕВ Александр Николаевич [20(31).8.1749, Москва,- 12(24).9.1802, Петербург].
СЕТКА (лат. Reticulum), созвездие Юж. полушария неба.
РАМОН-И-КАХАЛЬ (Ramon у Cajal) Сантьяго.
РАСИН (Racine), город на С. США.


Энциклопедия на: букву К, букву М и букву Н; предприятия, организации, фирмы, компании, производства, заводы, ооо.

улой
[2208-3.jpg]

когда X, Y приближаются к А. Отсюда следует, что в произвольных координатах расстояние между близкими точками (хi) и (xi+dxi), или, что то же самое, дифференциал длины дуги кривой, задаётся выражением
[2208-4.jpg]

(здесь коэффициенты gij = дij(х1, ..., хn) суть функции координат), к-рое наз. линейным элементом риманова пространства. Т. о., риманово пространство R можно аналитически определить как re-мерное многообразие, в к-ром в каждой точке задана дифференциальная квадратичная форма
[2208-5.jpg]

(она наз. также метрической формой, или просто метрикой, R и является по своему определению положительно определённой). Возможность преобразования координат обусловливает то, что одно и то же риманово пространство в разных координатах имеет разные выражения метрич. формы, однако её величина (вследствие своего геометрич. смысла как квадрата элемента длины дуги) при преобразовании координат должна оставаться неизменной :
[2208-6.jpg]

Это приводит к определённому закону преобразования коэффициентов gij как компонент дважды ковариантного тензора (см. Тензорное исчисление); он наз. метрическим тензором риманова пространства.

Каждой точке А риманова пространства R сопоставляется т. н. касательное евклидово пространство ЕA, в к-рое отображается нек-рая окрестность U точки А так, что относительное искажение расстояний стремится к нулю при приближении к точке А. Аналитически это сводится к введению вблизи нек-рой точки А0пространства ЕA таких координат, что в них квадрат линейного элемента ds20 евклидова пространства ЕAвыражается в точке АО такой же формой суммаi,jgij(А)dxidxj, какой выражается квадрат линейного элемента риманова пространства ds2 в точке А. Т. о., в пренебрежении малыми выше первого порядка окрестность точки в римановом пространстве можно заменять окрестностью точки касательного пространства.

Простейшие понятия римановой геометрии. 1)Длина дуги s кривой xi - xi(t) (ii=1, . . ., п, t1=[2208-7.jpg]

вдоль этой кривой (что соответствует как бы измерению длин "малым масштабом", как отметил ещё Риман). Если любые две точки пространства R соединимы кривой, то R становится метрическим пространством: расстояние р (Х, У) между двумя точками определяется как точная нижняя грань длин кривых, соединяющих эти точки, и наз. внутренней метрикой риманова пространства R.

2) Угол между двумя исходящими из одной точки А кривыми определяется как угол между касательными векторами к кривым в точке А.

3) О б ъ ё м V n-мерной области G риманова пространства определяется по формуле:
[2208-8.jpg]

Геодезические. Линии, к-рые в достаточно малых областях являются кратчайшими из всех кривых с теми же концами, наз. геодезическими, они играют роль прямых в римановом пространстве R. По определению, они являются экстремалями функционала
[2208-9.jpg]

(см. Вариационное исчисление) и удовлетворяют уравнениям:
[2208-10.jpg]

где Гijk - т. н. Кристоффеля символы, выражающиеся через компоненты мет-рич. тензора gijи их первые производные. Через каждую точку риманова пространства в любом направлении проходит геодезическая; любые две точки А, В достаточно малой области можно соединить кратчайшей [длина её будет равна внутр. расстоянию р (А, В) между этими точками], и притом единственной, однако единственность может нарушаться, если точки достаточно удалены друг от друга (напр., полюсы сферы соединимы бесконечным множеством дуг больших кругов, являющихся кратчайшими).

Представляет интерес (для описания периодич. движений в механич. задаче многих тел, например) оценка числа v замкнутых геодезических пространства R; эта задача (поставленная Ж. А. Пуанкаре в 1905 в связи с нек-рыми вопросами небесной механики), несмотря на усилия многих математиков, ещё далека от завершения, наилучший результат: v>=2, если R односвязно.

Соприкасающееся пространство. Между римановым пространством R и касательным к нему евклидовым пространством в окрестности V нек-рой точки А можно установить такое соответствие, при к-ром оба пространства будут совпадать с точностью до малых выше второго порядка. Для этого проводят из точки А геодезические во всех направлениях и каждой из них в касательном пространстве сопоставляют луч соответствующего направления, а затем устанавливают такое соответствие этих лучей и геодезических, при к-ром длины дуг геодезических и соответствующих им лучей равны. В достаточно малой окрестности такое соответствие будет взаимно однозначным; если ввести в касательном пространстве декартовы координаты х1, . . ., хn и приписать их значения соответствующим точкам окрестности U, то между линейными элементами ds риманова и ds0евклидова пространств будет такая связь:
[2208-11.jpg]

Евклидово пространство, поставленное в такое соответствие с римановым, и называется соприкасающимся (в отличие от обычного касательного пространства). Добиться более высокого порядка совпадения за счёт сп