| разны. Время установления равновесия (частичного или полного) в системе наз. временем релаксации.
Процесс установления равновесия в газах определяется длиной свободного пробега частиц l и временем свободного пробега t (ср. расстояние и ср. время между двумя последоват. столкновениями молекул). Отношение l/t % имеет порядок величины скорости частиц. Величины l и t очень малы по сравнению с макроскопич. масштабами длины и времени. С др. стороны, для газов время свободного пробега значительно больше времени столкновения to (t >> to). Только при этом условии Р. определяется лишь парными столкновениями молекул.
В одноатомных газах (без внутр. степеней свободы, т. е. обладающих только поступат. степенями свободы) Р. происходит в два этапа. На первом этапе за короткий промежуток времени, порядка времени столкновения молекул То, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным т. н. "сокращённое описание" неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, т. е. одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию.) Одночастичная функция удовлетворяет кинетическому уравнению Болъцмана, к-рое описывает процесс Р. Этот этап наз. кинетическим и является очень быстрым процессом Р. На втором этапе за время порядка времени свободного пробега молекул т в результате всего неск. столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, к-рое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространств. координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе Р. медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время Р. для локального равновесия tp ~ t. После установления локального равновесия для описания Р. неравновесного состояния системы служат уравнения гидродинамики (Навъе - Стокса уравнения, уравнения теплопроводности, диффузии и т. п.). При этом предполагается, что термодинамич. параметры системы (плотность, темп-ра и т. д.) и массовая скорость (ср. скорость переноса массы) мало меняются за время т и на расстоянии l. Этот этап Р. наз. гидродинамическим. Дальнейшая Р. системы к состоянию полного статистич. равновесия, при к-ром выравниваются ср. скорости частиц, ср. темп-pa, ср. концентрация и т. д., происходит медленно в результате очень большого числа столкновений. Такие процессы (вязкость, теплопроводность, диффузия, электропроводность и т. п.) наз. медленными. Соответствующее время P. tp зависит от размеров L системы и велико по сравнению с t: tp~t(L/l)2>>t, что имеет место при l<
В многоатомных газах (с внутр. степенями свободы) может быть замедлен обмен энергией между поступательными и внутр. степенями свободы, и возникает процесс Р., связанный с этим явлением. Быстрее всего - за время порядка времени между столкновениями - устанавливается равновесие по поступат. степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей темп-рой. Равновесно между поступат. и вращат. степенями свободы устанавливается значительно медленнее. Возбуждение колебат. степеней свободы может происходить лишь при высоких темп-pax. Поэтому в многоатомных газах возможны многоступенчатые процессы Р. энергии колебат. и вращат. степеней свободы.
В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными темп-рами компонент и процессы Р. их темп-р. Напр., в плазме сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в к-рых ионные и электронные темп-ры различны и, следовательно, происходят процессы Р. темп-р компонент.
В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетич. уравнения для одиочастичной функции распределения). Аналогичную роль для жидкости играют величины t1 и l1 - время и длина корреляции динамич. переменных, описывающих потоки энергии или импульса; t1 и l1 характеризуют затухание во времени и в пространстве взаимного влияния молекул, т. е. корреляции. При этом полностью остаётся в |