| отоком к поднимающемуся потоку пара. Достигнув низа колонны, жидкостный поток, обогащённый тяжелолетучими компонентами, подаётся в куб колонны (3). Здесь жидкость частично испаряется в результате нагрева подходящим теплоносителем, и пар снова поступает в исчерпывающую секцию. Выходящий из этой секции пар (т. н. отгонный) поступает в укрепляющую секцию. Пройдя её, обогащённый легколетучими компонентами пар поступает в дефлегматор (4), где обычно полностью конденсируется подходящим хладагентом. Полученная жидкость делится на 2 потока: дистиллят и флегму. Дистиллят является продуктовым потоком, а флегма поступает на орошение укрепляющей секции, по контактным устройствам к-рой стекает. Часть жидкости выводится из куба колонны в виде т. н. кубового остатка (также продуктовый поток).
[2148-3.jpg]
Рис. 3. Схемы потоков ректификационных колонн: а - непрерывная ректификация; б - периодическая ректификация; 1 - укрепляющая секция; 2 - исчерпывающая секция; 3 - куб колонны; 4 - дефлегматор.
Отношение кол-ва флегмы к кол-ву дистиллята обозначается через R и носит назв. флегмового числа. Это число - важная характеристика Р.: чем больше R, тем больше эксплуатационные расходы на проведение процесса. Минимально необходимые расходы тепла и холода, связанные с выполнением к.-л. конкретной задачи разделения, могут быть найдены с использованием понятия минимального флегмового числа, к-рое находится расчётным путём в предположении, что число контактных устройств, или общая высота насадки, стремится к бесконечности.
Если исходную смесь нужно разделить непрерывным способом на число фракций больше двух, то применяется последовательное либо параллельно-последовательное соединение колонн.
При периодической Р. (рис. 3, б) исходная жидкая смесь единовременно загружается в куб колонны, ёмкость к-рого соответствует желаемой производительности. Пары из куба поступают в колонну и поднимаются к дефлегматору, где происходит их конденсация. В начальный период весь конденсат возвращается в колонну, что отвечает т. н. режиму полного орошения. Затем конденсат делится на флегму и дистиллят. По мере отбора дистиллята (либо при постоянном флегмовом числе, либо с его изменением) из колонны выводятся сначала легколетучие компоненты, затем среднелетучие и т. д. Нужную фракцию (или фракции) отбирают в соответствующий сборник. Операция продолжается до полной переработки первоначально загруженной смеси.
Основы расчёта ректификационных колонн. Р. с физико-хим. точки зрения является сложным процессом противоточного тепломассообмена между жидкой и паровой фазами в условиях осложнённой гидродинамич. обстановки. Именно такой подход к математич. описанию расчёта процесса развивается в связи с применением электронных цифровых вычислит. машин (ЦВМ).
Всё же при количеств. рассмотрении работы ректификац. колонн обычно используется концепция теоретич. тарелки. Под такой тарелкой понимается гипотетич. контактное устройство, в к-ром устанавливается термодинамич. равновесие между покидающими его потоками пара и жидкости, т. е. концентрации компонентов этих потоков связаны между собой коэфф. распределения. Любой реальной ректификационной колонне можно поставить в соответствие колонну с определённым числом теоретич. тарелок, входные и выходные потоки к-рой как по величине, так и по концентрациям совпадают с потоками реальной колонны. Можно сказать, напр., что данный реальный аппарат эквивалентен по своей эффективности колонне с пятью, шестью и т. п. теоретич. тарелками. Исходя из этого, можно определить т. н. кпд колонны как отношение числа теоретич. тарелок, соответствующих этой колонне, к числу действительно установленных тарелок. Для насадочных колонн можно определить величину ВЭТТ (высоту, эквивалентную теоретич. тарелке) как отношение высоты слоя насадки к числу теоретич. тарелок, к-рым он эквивалентен по своему разделит. действию.
С концепцией теоретич. тарелки связана плодотворная идея отделения конструктивных и гидравлич. параметров от технологич. параметров, таких как отношения потоков и коэфф. распределения. Единая задача расчёта ректификационной колонны распадается при этом на две более простые, самостоятельные: а) технологич. расчёт, когда нужно установить, какие составы будут получаться на фиксированном числе теоретич. тарелок, или найти, сколько надо взять теоретич. тарелок, чтобы Получить желаемый состав выходящих потоков; б) расчёт, когда нужно установить, сколько взять реальных тарелок или какая высота насадки должна быть для реализации желаемого числа теоретич. тарелок. В математич. отношении первая задача (а) допускает чёткую формулировку и сводится к решению обширной системы нелинейных алгебраич. ур-ний (для непрерывно действующих колонн) или к интегрированию систем обыкновенных дифференциальных ур-ний (для периодич. колонн). В случае Р. многокомпонентной смеси решение доступно лишь с помощью ЦВМ. Использование машин позволяет также рассчитывать сложные колонны, применение к-рых на практике в какой-то степени тормозилось ранее отсутствием точных методов расчёта. При гидравл |