| ость и т. д.).
Методы а) и б) используются в основном для обнаружения барионных Р. в) Метод максимумов в массовых распределениях используется при обработке данных по неупругим реакциям вида а + b_>c1 + + с2+ ... + сn, когда в результате соударения двух частиц а и b возникает n частиц (n>=3). Здесь строят распределения числа событий с двумя (или несколькими) выделенными в конечном состоянии частицами, напр. с1, c2, в зависимости от суммарной энергии этих частиц в их с. ц. и.; в этой системе суммарная энергия E12 = E1 + E2определяет т. н. "эффективную массу" M12 пары частиц c1 + c2. Распределение по M12 наз. массовым распределением. Максимум в массовом распределении около ср. значения M12 = М* интерпретируется как Р. с массой М*, к-рый может распадаться на частицы c1 и c2. Данный метод можно успешно применять и в тех случаях, когда Р. распадается на сравнительно большое число частиц.
Вариантом этого метода может считаться метод "недостающей массы". Он используется в тех случаях, когда, напр. п = 3, и регистрировать частицу с3 легче, чем частицы с1 и с2. Энергию пары частиц с1, с2вычисляют по разности E12 = = Еав - Е3(как "недостающую" энергию). Р. проявляется как максимум в распределении по "недостающей" массе. Метод массовых распределений - осн. способ обнаружения мезонных Р.
До ноября 1974 было открыто более 200 Р., к-рые группируются примерно в 40 барионных и 25 мезонных изотопич. мультиплетов (см. Изотопическая инвариантность). Массы барионных Р. лежат в интервале от 1,2 до 3 Гэв, мезонных - от 700 до 1800 Мэв. Нижние границы массовых спектров Р. определяются массами ядерно-стабильных (т. е. стабильных относительно распадов за счёт сильного взаимодействия) мезонов и барионов, а верхние - эксперимент. возможностями их обнаружения.
В ноябре 1974 открыли 2 новых тяжёлых мезонных Р. (т. н. ф-частицы) с массами примерно 3,1 и 3,7 Гэв и необычными свойствами: несмотря на наличие мезонных распадов, частицы ф1 и ф2 обладают очень малой шириной (~ 90 кэв и ~0,5 Мэв). В январе 1975 был обнаружен ещё один мезонный Р. с массой ок. 4,2 Гэв.
Р., лежащие в верхней части массового спектра, обладают большими спинами и большими ширинами. Наибольший установленный спин J = 11/2 (Р. дельта3,11 с массой М = 2,4 Гэв). Эти Р. могут распадаться многими способами. Количество возможных каналов распада быстро увеличивается с ростом энергии. В области 1,5-2 Гэв барионные Р., напр., имеют около 5 различных каналов распада. Важная особенность механизма многочастичных каналов распада тяжёлых Р.- его каскадность, т. е. многоступенчатость. Так, напр., цестранный барионный Р. дельта3,7 (I = 3/2, J = 7/2, М = 1950 Мэв), образующийся в Пи N-соударениях, кроме осн. канала двухчастичного распада дельта3,7 -> Пи + N, обладает др. возможностями распада, среди к-рых доминирует распад на 2 пиона и нуклон: дельта3,7 _> Пи + Пи + + N; однако этот процесс идёт в 2 этапа: сначала дельта3,7 распадается на пион и дельта3,3, а затем дельта3,3 распадается на Пи и N: дельта3,7->Пи + дельта3,3 |_> Пи + N.
Несмотря на нек-рый рост полной ширины (т. е. полной вероятности распада), с возрастанием энергии вероятности распадов в каждый данный канал уменьшаются. Это затрудняет обнаружение и изучение свойств Р. с массами М >~ 2Гэв.
Массовые спектры Р. проявляют некоторые замечат. закономерности. Так, Р., к-рые при данной массе, чётности, изотопич. спине и странности имеют макс. спин ("старшие" Р), как правило, группируются в семейства 2 типов: 1) мультиплеты группы унитарной симметрии, 2) семейства, лежащие на линейных траекториях Редже.
1) Группа унитарной симметрии SU(3) является обобщением группы изотопич. симметрии SU (2). Изотопич. (или зарядовая) симметрия отражает эксперимент. факт независимости сильных взаимодействий от электрич. заряда. Благодаря этому, напр., протон (р) и нейтрон (n), отличающиеся только электрич. зарядом (и вследствие этого - магнитным моментом), одинаковым образом участвуют в сильных взаимодействиях и (как следствие этого) имеют очень близкие массы: Мр = 938,26 Мэв, Мn = 939,55 Мэв. Они образуют изотопич. дублет. Аналогично Пи+, Пио- и Пи--мезоны образуют изотопич. триплет и т. д. (число частиц, входящих в один изотопич. мультиплет, равно 2I + 1). Относит. разности масс частиц внутри изотопич. мультиплетов очень малы (<~1%) и обусловлены электромагнитным взаимодействием, нарушающим зарядовую симметрию. Унитарная симметрия SU(3) учитывает эксперимент. факт приближённой независимости сильных взаимодействий от странности. В приближении унитарной симметрии ядерностабильные частицы и Р. группируются в мультиплеты унитарной группы SU (3). Так, напр., ядерно-стабильные барионы образуют октет (нуклоны n и р, гипероны
[2145-27.jpg]
Фeрмиeвский Р. дельта3,3 входит в декаплет, состоящий из 10 частиц, и т. д. Унитарные мультиплеты объединяют ядерно-стабильные частицы и Р. с одинаковыми значениями барионного заряда В, чётности Р и спина J и разными значениями изотопич. спина I и странности S. Относит. разности масс внутри унитарных мультиплетов значительн |