| Мн. Р. х. возможны только под воздействием внешних источников энергии: тепловой, электромагнитной (фотохимические реакции), электрической (электрохимические реакции). При этом сама Р. х. может служить источником энергии. Количественное экспериментальное изучение Р. х. привело к установлению ряда осн. законов химии, отражающих как стехиометрию, так и энергетику реакций. К таким законам относятся постоянства состава закон, Тесса закон и др. Классификация Р. х. проводится по различным признакам и различается в зависимости от того, в какой области химии они исследуются. Термодинамическая классификация использует в качестве таких признаков: энергетику реакций (экзотермические, т. е. идущие с выделением тепла, и эндотермические, т. е. идущие с поглощением тепла); количество фаз реактантов (гомогенные и гетерогенные реакции). Различают Р. х., идущие в объёме, на поверхности раздела фаз и т. д. Кинетич. классификация выделяет след. признаки: скорость прямой и обратной реакций (обратимые и необратимые реакции); число взаимосвязанных реакций в системе (простая реакция, т. е. только одна, практически необратимая реакция, и сложная реакция, к-рую можно подразделить на неск. простых); молекулярность реакции (число молекул, одновременным взаимодействием между к-рыми осуществляется элементарный акт химич. превращения); порядок реакции по каждому реагенту и в целом (см. Кинетика химическая). Сложные Р. х. по форме связи простых реакций подразделяются на параллельные, последовательные, сопряжённые, обратимые и т. д. В отд. группу выделяется обширный класс каталитич. реакций (см. Катализ). В зависимости от того, какие частицы участвуют в элементарном акте, реакции подразделяются на молекулярные, ионные, фотохимические и т. д., а также радикальные или цепные реакции. Детальное подразделение реакций проводится и по их механизму.
В неорганич. химии широко используется классификация Р. х. по типам участвующих в них соединений и по характеру их взаимодействия: реакции образования и разложения, гидролиза, нейтрализации реакции, реакции окисления-восстановления. Большую группу Р. х. составляют различные реакции комплексообразования.
Органич. реакции подразделяют на две большие группы: гетеролитич., при к-рых разрыв связи в молекуле происходит несимметрично и электроны остаются спаренными, и гомолитич., в к-рых происходит симметричный разрыв связи, в результате чего образуются радикалы. В зависимости от типа атакующего реагента гетеролитич. реакции могут быть нук-леофильными (обозначаются символом N) и электрофильными (символ Е). Осн. три класса органич. реакций включают замещения (обозначаются символом S с индексами N или Е), присоединения (символ А) и отщепления (элиминирования, символ Е). Каждая из этих реакций в зависимости от механизма может осуществляться как нуклеофильный, электрофильный или радикальный процесс. Особый класс реакций составляют реакции циклоприсоединения. С учётом молекулярности лимитирующей стадии различают мономолекулярные (напр., SЕ 1) и бимолекулярные (напр., SE 2) реакции. Помимо указанных механизмов, присоединения и замещения реакции могут происходить в результате окислительно-восстановительного взаимодействия реагентов. Мн. органич. реакции включают ряд последовательных стадий, в т. ч. обратимых. Общая обратимость характерна для таких, напр., реакций, как реакции металлирования и ароматич. сульфирования. Возможны реакции, в к-рых промежуточные соединения вступают в параллельные реакции, что приводит к образованию смеси продуктов. Многочисл. превращения органич. молекул включают процессы, происходящие без изменения состава, но приводящие к изменению хим. строения (структуры) соединения, напр. различного типа изомеризации, молекулярные перегруппировки и таутомерные превращения (см. Органическая химия).
Понятие Р. х. является в известной степени условным. Так, к числу Р. х. обычно не относят образование ассоциатов в растворах, электронные возбуждения молекул (даже при существ. изменении равновесной геометрич. конфигурации) и ряд др. процессов.
Лит.: Эмануэль Н. М., Кнорре Д. Г., Курс химической кинетики, 2 изд., М., 1969; Курс физической химии, под общ. ред. Я. И. Герасимова, 2 изд., т. 2, М., 1973; Матье Ж., Панико Р., Курс теоретических основ органической химии, пер. с франц., М., 1975.
Н. Ф. Степанов.
РЕАКЦИОННАЯ ПЛАВКА, способ получения металлов, в основе к-рого лежит взаимодействие между сульфидом и окислом извлекаемого металла (MeS + + 2МеО = 3Ме + SO2) или между сульфатом и окислом (Me + MeSO4 = = 2Ме + 2SO2). В металлургии свинца Р. п. наз. также горновой. Процесс осуществляется в спец. горне, куда загружают богатый свинцовый концентрат и кокс. Шихту продувают сжатым воздухом. За счёт горения кокса и тепла, выделяющегося при окислении сульфидов, темп-ра в горне поднимается до 700-900 оС; при этой темп-ре протекают осн. взаимодействия Р. п., приводящие к вытапливанию чернового свинца. Шихта во время реакции должна находиться в рыхлом состоянии; контакт между компонентами достигается непрерывным перегреванием с помощью механич. перегребателя. В че |